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Temperature dissipation in a turbulent round jet 
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Parallel cold wires were used to measure the temperature derivative, in each of the three 
spatial directions, in the self-preserving region of a turbulent round jet. The temperature 
derivative variances were inferred from the correlation method and from the 
temperature derivative spectra after correcting these for the effect of wire separation. 
Both methods yielded fully consistent results for the components of the average 
temperature dissipation: the radial and azimuthal values are nearly equal and only 
slightly larger than the axial component. The resulting departure from isotropy of the 
temperature dissipation is small, especially when compared with results in other free 
shear flows. The high-wavenumber behaviour of the corrected temperature derivative 
spectra conforms closely with isotropy on the jet axis but small departures occur away 
from the axis. Conditional averages, based on spatially coherent temperature jumps, 
indicate that, while the organized motion makes a significant contribution to the 
temperature variance, its contribution to the temperature-derivative variances is small. 

1. Introduction 
Accurate estimates of the average temperature dissipation ce = a? (O,t = aO/ax,, a 

is the thermal diffusivity, 19 is the temperature fluctuation ; unless otherwise mentioned, 
repeated subscripts imply summation) are needed to balance the budget of the 
temperature variance e". They are also needed in engineering models which assume a 
constant value of the timescale ratio (~/c)/(@/c@), where +? is the average turbulent 
- kinetic energy and C is the average turbulent kinetic energy dissipation. More recently, 
O2 - ee models with transport equations for 8" and co have been used in conjunction with 
a k- F model in different shear flows (e.g. Nagano & Kim 1988 in a boundary layer, 
Tulapurkara, Antonia & Browne 1989 in a wake). In turbulent combustion modelling, 
a knowledge of the joint probability density function between €8 and the scalar 
fluctuation 8 is considered important for predicting turbulent diffusion flames (Bilger 
1989). 

The relative magnitudes of the three components of Fe can provide a measure of the 
departure from local isotropy. Measurements in a turbulent boundary layer by 
Krishnamoorthy & Antonia (1987) highlighted the strong anisotropy near the wall, a 
region dominated by % (x, is in the direction normal to the wall). In the outer layer, 
the anisotropy was smaller but not negligible. The largest and smallest components 
were 3 and efl (x, and x, are in the streamwise and spanwise directions respectively) 
as previously observed by Verollet (1972). Measurements of the three components of 
go in a quasi-homogeneous shear flow (Tavoularis & Corrsin 1981), a self-preserving 
plane jet (Antonia & Browne 1983) and a self-preserving plane wake (Antonia & 
Browne 1986), have also indicated significant departures from isotropy. 

The situation in a circular jet appears to be different from that in the flows mentioned 
above. Using Raman-scattered light collected by a two-camera imaging system, 
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Namazian, Schefer & Kelly (1988) measured two components, a? and a s  (in their 
experiment, 0 is the fluctuating mass fraction of methane while a is the diffusivity of 
methane; x, is in the radial direction), of c6 in the developing region (x , /d  < 1'7) of an 
isothermal circular jet. At x l / d  = 5 ,  % was approximately equal to at the jet axis 
but increased relative to away from the axis, the difference reaching a maximum near 
the half-radius. This difference decreased as x , /d  increased and was negligible at 
x , / d  = 17, apparently indicating that isotropy was achieved, - provided the unmeasured 
azimuthal component Bf3 is also equal to or 0:,. Namazian et al.'s results at 
x , / d =  17 are at variance with the earlier measurements by Lockwood & Moneib 
(1980), also in a circular jet, which indicated that % was twice as large as 82, on the 
axis at xJd= 30. The latter data, obtained with a pair of thermocouple wires 
(12.7 pm diameter) compensated for their thermal inertia, are likely to have suffered 
from the relatively large separation between the wires and the general difficulty of 
compensating for a fluctuating time constant. Hussein & George (1989) measured 
seven of the nine velocity derivatives that feature in the homogeneous expression for 
t-in the self-preserving region of a circular jet. They found that the derivative data were 
in closer agreement with the assumption of local axisymmetry (signifying invariance of 
statistical properties with respect to a preferred direction? ; The implications of this 
assumption were explored in more detail by George & Hussein 1991) than with local 
isotropy. As was noted by George & Hussein, the small-scale data in significant regions 
of the flows previously mentioned (e.g. boundary layer, plane jet, plane wake, 
homogeneous shear flow) also satisfy local axisymmetry more closely than local 
isotropy (see also Antonia et al. 1991). The axisymmetric values of t-were significantly 
larger (by a factor of about 1.2 on the axis to about 2.3 at x2 z R,) than the isotropic 
estimates, thus suggesting a strong departure from isotropy. It should be noted 
however that a direct check of the accuracy of t-via measurements of all the other terms 
in the transport equation is made difficult by the existence of the pressure diffusion 
term. For this reason, George & Hussein were not able to make a definitive statement 
on the accuracy of their axisymmetric distribution. 

Since anisotropy may be more pronounced in C6 than tr (e.g. the wake data of 
Browne, Antonia & Shah 1987), measurements of may provide a sensitive indication 
of the anisotropy of a circular jet. Also, the accuracy of c6 can be checked with more 
confidence than t- since the transport equation for e" does not contain the pressure 
fluctuation. Two, not necessarily unrelated, characteristics make accurate turbulence 
measurements difficult in the circular jet. One of these is the presence of high turbulence 
intensity while the other is the occurrence of flow reversal in the outer region. In the 
present context, the first difficulty would need to be taken into account if Taylor's 
hypothesis were used for determining O,,. In the present experiment, O,, was 
determined directly thus avoiding Taylor's hypothesis. The second difficulty was 
partially cirvumvented by taking most of the data in a region between the jet axis and 
the half-radius location, where flow reversal first becomes significant (Antonia, 
Chambers & Hussain 1980). A major challenge one faces when estimating O , i  from a 
pair of parallel cold-wire signals is to establish that the values of are not adversely 
affected by the finite separation Axt between the cold wires. Although this problem has 
been discussed previously (for example, Browne, Antonia & Chambers 1983 a ;  Brown, 
Antonia & Rajagopalan 1983 b;  Krishnamoorthy & Antonia 1987) it is readdressed 
in $4. 

t These authors used x1 as the preferred direction but noted (see also Antonia, Kim & Browne 
1991) that other choices, e.g. the principal rate of strain direction, may be more suitable. 
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2. Experimental details 
The jet was supplied by a variable centrifugal blower through an axisymmetric 

nozzle with a 10: 1 contraction ratio. The air supply was heated by an electrical fan 
heater (2.4 kW) located at the blower entrance. At the nozzle exit (diameter d of 
25.4 mm), the temperature was 32 "C above ambient. In order to obtain a uniform 
and symmetrical (about the jet axis) mean temperature profile at the nozzle exit, the 
complete tunnel was insulated (25 mm thick insulating foam with a metallic foil 
overlay). At the nozzle exit, the temperature was uniform to within & 1 Yo. 

Spatial derivatives of the temperature fluctuation 0 were obtained using two parallel 
cold wires. Wollaston (Pt-10% Rh) wires of nominal diameter d, x 0.64 pm were 
operated by in-house constant-current circuits supplying 0.1 mA to each wire. (For this 
current and the existing experimental conditions, the velocity contamination of the 
cold-wire signal was negligible for all the quantities considered in this paper.) The 
wires, with a nominal length I, of about 0.45 mm, were perpendicular to the flow 
direction. Each wire was carefully checked under a microscope for straightness 
immediately prior to the experiments. Care was taken to ensure that the etched portion 
of each wire was central and parallel so as to minimize the uncertainty in the 
measurement of Axt, the separation in the xi direction (i = 1, 2 and 3 stand for axial, 
radial and azimuthal directions respectively) between the wires. 

The wires were mounted on separate traversing mechanisms, each fitted with a dial 
gauge with a least count of 0.01 mm. To determine the separation of Axt, each wire was 
separately brought into alignment with a fixed reference line (cross-hair of a 
cathetometer). When alignment was achieved, the dial gauges on the traversing 
mechanisms were set to zero. Estimates of the temperature coefficient of the cold wires 
Were made by mounting the wires at the jet exit using a 10 Q platinum resistance 
thermometer operated in a Leeds and Northrup 8087 bridge (with a resolution of 
0.010 "C). Both wires and the associated electronic circuits were calibrated at the same 
time to minimize relative errors in wire calibrations. 

Special attention was given to the choice of the wire length and the probe geometry 
to reduce the experimental error associated with the use of parallel wires for obtaining 
spatial derivatives. The diameter d, (w 0.64 p) and length 1, ( M 0.45 mm) of the 
wires were chosen so that the ratio l,/d, (x 720) was sufficiently large to minimize 
possible attenuation at low wavenumbers (Paranthoen, Petit & Lecordier 1982) while 
keeping lw/y, where 7 = (v3/$ is the Kolmogorov microscale, as small as practicable. 
On the axis at xJd = 30, the experimental value of l,/r ( x  2.65) was small enough to 
minimize the attenuation at high wavenumbers (Wyngaard 1968). Only the central part 
of the Wollaston wires was etched to avoid difficulties associated with fully etched 
wires. For a given wire length, Paranthoen et al. (1982) found that the signal for a fully 
etched wire is more attenuated than that from a partially etched wire. The boundary- 
layer measurements of Anselmet et ul. (1990) indicated that the r.m.s. temperature 
from a fully etched wire is significantly smaller than that for a partially etched wire. 

In order to remove high-frequency electronic noise, the signals from both wires were 
first low-pass filtered, The filter settings were determined by viewing the time derivative 
spectra on the screen of a real-time spectrum analyser (HP3582A). Special attention 
was given to the degree of correlation between the two signals and to the time 
derivative spectra of these signals. If the spectra looked different, one or both of the 
wires were replaced by newly etched ones until no visible difference could be perceived. 
The correlation coefficient p between the two wires was higher than 0.994 for 
Axi = 0.3 mm at every location. The filter cutoff frequencies were identified with the 
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frequencies at which the derivative spectra were about 2-3 dB higher than the 
frequencies at which the noise first began to make a significant contribution. These 
settings were determined at each measurement location and found to be the same for 
the two wires. For the present experimental conditions, the filter cutoff frequency f, 
was 2.2 kHz on the axis, where the Kolmogorov frequencyf, (= u/2n7,0 is the local 
mean velocity) was 2.0 kHz, and 1.2 kHz at x ,  w R,, wheref, was about 0.8 kHz. The 
wires were cleaned in alcohol or re-etched to remove any contamination and then to 
avoid any possible degradation with time of the wire frequency response. According to 
Antonia, Browne & Chambers (1981), for 0 = 2 m/s, the frequency response (-3 dB 
point) of a nominal 0.64 pn cold wire is about 2.5 kHz. It was therefore reasonable, 
as already noted by Tavoularis & Corrsin (1981), to neglect the possible effect on A6' 
of unequal time constants of the two wires since the filter cutoff frequency was smaller 
than the frequency corresponding to the wire time constant. 

After filtering, the signals from the two wires were passed through buck and gain 
units to offset the d.c. components and provide suitable amplification prior to digitizing 
the signals with a 12 bit A/D converter (RC Electronics) on a personal computer (NEC 
386). The sampling frequency was chosen as twice the cutoff frequency and the record 
duration was 50s. The digital data were directly transferred from the personal 
computer to a VAX 8550 computer using an ETHERNET (fibre-optic cable) link. 

3. Experimental conditions 
The jet exit velocity Uj was 11 m/s and the Reynolds number R, (= Uj d/v) was 

about 1.9 x lo4. All measurements were made at x l / d  = 30 (for this flow, self- 
preservation was verified for x J d  & 15, Chua & Antonia 1986). On the axis, the mean 
velocity U, and mean temperature T, were 2.1 m/s and 4.8 "C (relative to ambient) 
respectively while @/U, and Pi/& were 0.26 and 0.2 respectively. The turbulence 
Reynolds number R, = qiA/v (where h = U;l@L$..and u ~ , ~  = au,/at) was about 
150. The PCclet number 4 = &A,/a, where A, = O23/6'fj, was equal to 83. The half- 
radii R, and R,, derived from mean velocity and mean temperature profiles respectively, 
were 75 mm and 90 mm. The ratio Gr/Ri (Gr = gRt T , / v T ,  is the Grashof number 
where T, is the absolute ambient temperature, and R, s U, R, /v  is the local Reynolds 
number) is about 0.0027, implying that buoyancy should be negligible and justifying 
the use of temperature as a passive contaminant. The Kolmogorov microscale 7 
increases from about 0.17 mm on the axis to about 0.2 mm at x2 = R,. 

4. Temperature-derivative variances 

axial, radial and azimuthal directions respectively) is to use the approximation 
A possible way of determining e f i  (no summation on i here, i = 1,2,3 represent the 

6' w A6'/Axi, (1) 
in the limit as Ax: -+ 0. There are however important random and systematic errors 
which arise in this process. The random errors include the uncertainties in measuring 
Axi and in determining the temperature coefficients of the cold wires. (As noted in $2, 
an effort was made to minimize both uncertainties.) The systematic error is most likely 
due to contamination by noise (both from the wires and the electronics). When Axi is 
very small, the signals from wires 1 and 2 may be assumed to be given by (B+n,) and 
(O-tn,) respectively, where n, and n, are the uncorrelated noise contents of the two 
signals. The quantity will then systematically increase, approaching infinity as 
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FIGURE 1. Mean-squared values of the mssured O,( as afunction of Ax: on the jet axis: 

0, i =  1; A, 2; +, 3; ., (Oycorr;  - , rr(6’:i)corr. I, error bar. 

Axi + 0 since should approach a constant (non-zero) value ($+z). The increase 
is discernible on the data in figure 1 for Ax: S 3 (see also Browne et aZ. 1983a, b) .  
It is less pronounced in figure 2, where there is only one point below Ax: = 3. 

corresponding to different i to 
converge to the same value, if the noise is the same in each case. In the present 
experiments, the cold wires often had to be replaced and the values of n, and n, are 
unlikely to have remained the same from one experiment to the next?. The location at 
which first rises is therefore difficult to define precisely. This and the increased 
importance of the random errors (Mestayer & Chambaud 1979) are good reasons to 
disregard data at small separations (say Ax: 5 2 or 3). Although correct in theory, 
Klewicki & Falco’s (1990) prescription that Ax: should be in the range 1.0 < Ax: < 
3.33 and George & Hussein’s (1991) suggestion that ‘all of the spatial dimensions of 
the probes must be on the order of or smaller than the Kolmogorov microscale ’ may, 
in practice, lead to errors when selecting Ax:. While it is conceivable that Ax: M 1 may 
be adequate for some experimental conditions, such a choice should be made only after 
assessing (by experiment) the effect of varying Ax:. For the data in figure 1, the use of 
Ax: w 1 could result in 

It is not evident how one should infer the correct or true value of % from the data 
of figure 1. An estimate of can also be obtained from the correlation 6(xJ O(x, + A x f ) .  
With the assumption of homogeneity, the limiting behaviour (as Ax,+O) of the 
correlation coefficient p = @(xi) O(x, + Ax,)/02(x$02(xi + Ax,): is approximated by 
(Batchelor 1953) 

where A, = t9G/f?:t is the Taylor microscale for temperature. The assumption of 

t The apparently faster increase for i = 1 than i = 2 or 3 (figure 2) may be due to probe interference 
effects when the wires are separated in the x, direction. We did check however that, at the first 
separation point, statistics of the temperature signal of the downstream wire did not change (within 
the experimental uncertainty) when the upstream wire was removed. 

At very small Ax? one would expect different 

being overestimated by as much as 170 YO. 

p w 1 - (AxJ2/2A;,  (2) 
-1 -1 
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FIGURE 2. Mean-squared temperature derivative values on the jet axis. 0, uncorrected; 0,  
corrected; ., correlation method. I, error bars. -, Of,, (average of corrected values in the range 
3 6 Ax: 6 6). 

homogeneity can be relaxed by including (p),, in the Taylor series expansion of 
O(x,) B(xi + Axi).  The resulting expression for p, which is similar to that given in 
Townsend (1956) for the velocity correlation, is 

The main non-homogeneity is in the x2 direction. However, the maximum value of the 
ratio of the second and first terms inside the braces in (3) is about 0.003 for i = 2 (at 
x , / d =  30), suggesting that (2) should be adequate for all i. 

The value of hi is usually inferred from a log-log plot of (1 -p)  us. Ax: at small Ax:. 
Such a plot should, for consistency with (2), indicate a linear behaviour, with a slope 
of + 2, as Ax: + 0. There is a small Ax: range in figure 3 where (2) is satisfied but there 
is a noticeable departure at the smallest Ax: (the data of Rose 1966 and Champagne, 
Harris & Corrsin 1970, show the same trend - which these authors attributed to probe 
interference effects and electronic noise ; the accuracy of their velocity Taylor 
microscales was estimated to be & 5 %). The correlation values of %, hereafter referred 
to as (q)corr, are shown on the ordinates of figures 1 and 2. They are nearly 
independent of i at all (= x , /R , ) ,  implying that the isotropic relation 
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0, i = 1 ;  A, 2; +, 3 .  -, lines of slope of +2. 
FIGURE 3. Log-log representation of (1 -p )  as a function of A$ at three flow locations. 

is nearly approximated by the data. The collapse of the data in figure 3 suggests that, 
for the same value of Axt,  

( 5 )  
is also nearly approximated by the data. Like (4), (5 )  is consistent with local isotropy 
(e.g. Monin & Yaglom 1975, p. 136; Mestayer 1982). The (1 - p )  data of figure 3 differ 
significantly from the corresponding data in the wake (Antonia & Browne 1986, figure 
5)  and the boundary layer (figure 2 of Krishnamoorthy & Antonia 1987), the departure 
from (4) and ( 5 )  being significantly larger in the latter two flows. 

Wyngaard's (1971) analysif provides a way of estimating the effect of Axt on the 
measured values of @, through equation (1). The adaptation of Wyngaard's analysis 
to spatial temperature derivatives was presented in Browne et al. (1983b); it allows the 
high-wavenumber part of the O,t spectrum to be corrected for the effect of Axi. The 
spectrum of 8,i ,  is given by (cf. the Appendix) 

P(AXl> = P ( W  = P(AX3) 

where k is the magnitude (k; + kg + k$ of the wavenumber vector k and $(k) is related 
to the three-dimensional spectrum r ( k )  by 

I@) = T(k)/4xk2. (7) 
18 FLM 250 



538 R. A .  Antonia and J. Mi 

Although the analysis which leads to (6 )  assumes isotropy, its purpose is to correct the 
attenuation of the high-wavenumber part of q50,t due to Axt. In this sense, the 
application of the analysis to the present data should not therefore force agreement 
with (4) since one would expect departures from isotropy to reside mainly at low 
wavenumbers. T(k)  can be estimated from the one-dimensional temperature spectrum 
$&kl> by the isotropic relation 

m) = - ~ ( ~ $ , / a k , > k I = , .  (8) 

The measured q50,i can be corrected by multiplying it with the factor 

inferred from (6). For i = 1, 
Ri $e,$@i, A X i  + O ) / q 5 0 , t ( k ,  4) 

R, = i (k ,  Ax,), sin-2 (+kl Ax1). (9) 

This correction is independent of r ( k ) .  It is also independent of isotropy since it can 
be obtained from (A 3) and (A 4) of the Appendix. For i = 2 or 3, 

The integration in (6 )  was carried out numerically, after T(k) was determined from (€9, 
at each measurement location. Measured spectra of O,$ at the jet axis are shown in 
figure 4 in terms of the normalized wavenumber k: (E klT). The corrected spectra, 
using (9) and (lo), are also shown in this figure, the normalization being such that 

(OK is the Kolmogorov temperature scale). As k: + 1, the measured spectra show the 
expected attenuation at high wavenumbers as Axi increases (the arrows are in the 
direction of increasing Ax:). All three sets of corrected spectra collapse, allowing for 
the experimental uncertainty, at nearly all values of k:. This collapse implies unique 
values of 82,(7/Q2, perhaps with a larger uncertainty for i = 1 than i = 2 or 3. 
These values were obtained by multiplying the measured values of by ri ,  where 

The distribution of rt (q) , , ,  shown in figure 1 is consistent with the data in the range 
3 5 Ax: 5 9, suggesting that the Wyngaard-based correction is adequate in the present 
flow. Figure 2 shows that when r d s  applied to each data point, there is a range of Ax: 
in which the corrected value of 02$, denoted by efi,, isnearly constant. The difference 
between and (T)corr is small (the uncertainty in O:tc is slightly smaller than that in 
(82i)corr so that the former estimates are used in $5) .  

Although Taylor's hypothesis is not used here, it is of interest to note that on the jet 
axis, is in reasonable agreement with the value that would be obtained from the 
relatioic8T; = U-z(i30/at)2. However, this relation becomes increasingly inaccurate as 
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FIGURE 4. Uncorrected and corrected temperature derivative spectra on the jet axis. (Arrows are in 
direction of increasing separation between cold wires.) (a) 19, I (Ax; in the range 2.3 to 4.7); (b) O,% (Ax: 
in the range 2.9 to lo); (c) 0,3 (Ax: in the range 2.9 to lo). 
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the distance from the axis increases; the Lumley (1 965)-based Wyngaard-Clifford 
(1977) correction to Taylor's hypothesis (see also George, Hussein & Woodward 1989) 
appears to represent the present values of %.well (a detailed comparison between the 
statistics of temporal and streamwise derivattves will be presented elsewhere). 

5. Temperature dissipation and e" budget 
Distributions across the jet of the average temperature dissipation and of its three 

components are shown in figure 5. The azimuthal and radial components of Co are 
approximately equal everywhere in the flow. The equality 3 = % is expected on the 
jet axis as a consequence of symmetry. Away from the axis, the validation of this 
equality by the present data indicates support for local axisymmetry or rotational 
- symmetry about xl. George & Hussein (1991) show (their table 3) that the equality 
ef2 = % is reasonably well supported by data in different shear flows. In the present 
flow, the magnitude of efl is only slightly smaller than that of the other two 
components so that the departure from local isotropy appears to be small. The present 
results support and extend those of Namazian et al. (1988) but appear to be at variance 
with the strong anisotropy of the velocity derivatives reported by George & Hussein 
(1991). 

A measure of the departure from local isotropy is given by the ratio C~/(C~)iso.  Figure 
6 shows that the ratio is nearly equal to 1 on the axis and increases only slightly across 
the jet. This behaviour contrasts strongly with that in a plane jet and in a plane wake. 
Values of this ratio obtained from Antonia & Browne (1983) for the plane jet and from 
Browne et al. (1987) for the wake are also shown in figure 6.  

An indirect validation of the measured values of c0 is provided by the budget of $@. 
After neglecting the viscous diffusion term, an approximate form of this budget is given 

7 Advection Diffusion Production Dissipation 
Estimates of the advection and production terms were based on the assumption of self- 
preservation. In particular, 0, T and are given by 

Expressions (1 3) were closely supported by Chua's (1989) measurements, the axial 
variations of R,, U,, and T, being given by 

R,/d = 0.099(xl/d-0.027), 
U,/Uj = [0.18(~,/d-0.8)]-~, 
&/q = [0 .23(xl /d-  l)]-l. 

The radial velocity V was calculated using the continuity equation 

while the radial heat flux ZB was inferred from Chua's (1989) measurements of 
self-preserving flow region. 

in the 

The terms on the left-hand side of (1 2) are plotted in figure 7 after normalization by 
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FIGURE 6. Anisotropy of temperature dissipation in circular jet and comparison with plane jet and 
plane wake: 0, present; 0, plane jet (Antonia & Browne 1983); A, plane wake (Browne et al. 1987). 

U,, Tt R;l. The diffusion term was not measured; it was only inferred by difference. The 
variation of this term across the jet is reasonable since the positive and negative areas 
under the diffusion curve are approximately equal, consistent with the requirement 

zx, a (x,u82) dx, = 0. I' - I &  

The diffusion is very similar to that measured by Antonia, Prabhu & Stephenson (1975) 
in a round jet with a co-flowing stream. 
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FIGURE 7. Measured budget of ip: A, production; 0, advection; 0,  dissipation; 
0, diffusion (by difference). 

The magnitude of Eo decreases only slightly between the axis and 6 w 1, i.e. a region 
for which the flow is approximately fully turbulent (the intermittency factor is about 
0.98 at 6 = 1; Chua 1989; Wygnanski & Fiedler 1969). It should be noted that the 
budget in figure 7 is very similar to that given in Antonia et al. (1975). Since local 
isotropy was used in the latter paper to estimate go (the resulting imbalance in the 
budget was small), the present results provide an important verification of this 
assumption. 

6. Contributions from temperature jumps to temperature-derivative 
variances 

The ramp-like temperature signature in a circular jet and various other shear flows 
has been observed by several authors (see Broadwell & Mungal 1991, for references). 
This signature is characterized by a relatively sudden increase or jump in temperature 
which is followed by a gradual decrease. Antonia et al. (1975) and Sreenivasan, 
Antonia & Britz (1979) noted that the jump is coherent over a significant part of the 
jet. Sreenivasan (1991) drew attention to the similarity between the ramp-like 
occurrences in the concentration field and the highly dissipative three-dimensional 
sheet-like structures inferred from two-dimensional images (obtained by a laser- 
induced fluorescence technique) of a circular jet. Away from the jet axis, the sheets have 
a preferred orientation (about 45”), which corresponds to that of the principal axis for 
mean strain (see also Van Cruyningen, Lozano & Hanson 1990). This evidence led 
Sreenivasan to suggest that isotropy is neither ‘natural’ nor ‘obvious’ for the small- 
scale scalar field. The present near-equality of the three temperature-derivative 
variances in apparent conformity with isotropy, suggests that it would be useful to 
quantify the contributions to these variances from the sheet-like structures. As no 
attempt was made in the present investigation to identify these sheet-like structures, we 
restrict our attention to the temperature jumps and attempt to estimate their 
contributions to the temperature derivative variances. 
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FIGURE 8. Averages of B conditioned on temperature jumps at 6 = 0, 0.53 and 1.06. 

The jumps are detected here with the WAG (window average gradient) method 
(Antonia & Fulachier 1989; Bisset, Antonia & Browne 1990). For each point in the 
digital-temperature time series, 6',, the quantity 

is calculated. A detection region begins when WAG, first exceeds k@, where k is a 
threshold, and ends when WAG, becomes negative. Each detection point di is the 
instant at which WAG, is largest within a detection region. The detection window 
length 27+ 1 and the threshold were chosen equal to the number of the Om points 
covering a half of the average period of the organized motion in its time series (for 
example, 500 at the axis) and 0.5, respectively. This choice was made such that the 
number of detections obtained was approximately equal to that of the whole sampling 
duration (= 50 s) multiplying with the average frequency f, of the organized motion. 

The temperature fluctuation 6' is decomposed into ( d ) ,  the component of 6' 
associated with the detected organized motion, and B,, the remainder, namely 

e = (8) +or. (14) 
The coherent component is given by 

l N  
(0) = - 6'(di+t), 

Ni-1 

where N is the total number of detections and t is time measured relative to di. 
Distributions of (@/@ at 5 = 0, 0.53 and 1.06 are shown in figure 8 in terms of 
xi = - tUc,  where U, is the convection velocity of the organized motion. U, was 
inferred from temperature space-time correlations (using two cold wires separated in 
the axial direction). The magnitude of U, decreased between 0.99 U, on the axis and 
0.72 U, at the half-radius. Conditional averages in figure 8 indicate a jump in (8 )  
near xi  = 0. The magnitude of the jump increases as 6 increases (such an increase was 
also observed in a plane jet, Antonia et al. 1986). 
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-- -- -- 
5 <e>zl@ <e>Tl/e <e>2,1e; m/e; 

0 26.5 4.8 0.8 0.9 
0.27 27.3 5.2 0.9 1.1 
0.53 30.4 6.4 1.3 1.2 
0.80 33.2 7.8 2.1 1.4 
1.06 35.6 8.7 2.9 1.8 

TABLE 1. Estimates, as percentages, of contributions from detected motion to and 

To help quantify the contributions from the detection motion to e" and ef , ,  
structural averages are introduced, viz. 

wherefrepresents either 8 or O,t .  The times t ,  and t, (relative to the detection) were 
selected so that t ,  U, = -;A and t, U, = +;A,  where A is the wavelength of the 
organized motion. Chua's (1 989) space-time correlations of the longitudinal velocity 
fluctuation at x / d  = 30 were used for selecting A (3  6.4 Ru). This value is in reasonable 
agreement with that (z 6 R,) of Tso, Kovasznay & Hussain (1981), also for a circular 
jet (40 < x / d  < 50). The average frequencyf, of the organized motion may be defined 
by f. = UJA.  The present values o f f ,  RJU, are in the range 0.15 (6 = 0) to 0.1 1 
(E w 1). Interestingly, these values compare favourably with the average frequency 
( m  0.11 non-dimensionalized on U,, and the half-width L,) of the organized motion in 
a plane jet (e.g. Cervantes de Gortari & Goldschmidt 1981 ; Antonia et al. 1983). 

After differentiating (14) with respect to xi (and noting that (O),, = (O.,)), squaring, 
and structurally averaging, we have 

--- m=(e>r,+m, 
- - - -- -- 

where (efi> = Bf , .  The ratios (8)f,/@t are shown in table 1 together with (0)2/82, the 
contribution of the detected motion to the temperature variance. While the latter 
contribution is significant (ranging between 26.5 YO at = 0 and 35.6% at 6 E I), 
the contributions to the derivative variances are quite small on the axis, increasing only 
slightly to the half-radius location. This reflects the previously noted i n c r e e f  - ( 0 )  
with respect to 6, near x' = 0 (figure 8). Although the tabulated values of (0):t were 
obtained for Ax: w 5.3, we have verified that the values are practically unchanged for 
3 5 Ax: < 10. The sensitivity of the temperature jump results to the detection process 
was checked by varying the detection window length (27 + 1) and the threshold (k)  ; the 
variation affected (e>fi by less than 10 %. 

The table indicates that the contribution of the detected motion to the streamwise- 
derivative variance is slightly larger than to either the x, or x, derivative variances. 
Since is somewhat smaller than % (or T), the tabulated values indirectly suggest 
that the remainder motion contributes more to 82, (or 82,) than to c. However, this 
does not imply that the random part of % is more anisotropic than 8:i itself, since the 
detection scheme does not capture all the coherent structures. 

The temperature jumps, which are convected in the flow direction, may be skewed 
or curved in the lateral directions. It would be reasonable to expect large values of Oft  
(though not necessarily simultaneously) to be associated with the jumps. To quantify 

- 
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FIGURE 9. Averages of 0:6 conditioned on temperature jumps at 6 = 0. 

this expectation, conditional averages of Oyi were formed, using the following relation, 
similar to (1 5) : 

l N  
Ni-1 

The resulting distributions on the axis (figure 9) indicate good coincidence between the 
jumps and the activity in i3$i. There is also strong activity in these quantities 
immediately after the jump occurs. Most of the activity is, however, concentrated in a 
very narrow region near xi = 0, with the largest peaks at negative values of x; /R, .  The 
peak in (Of,) is much larger than in (ef,) or (Oz,). A possible reason for this is that 
the normal to the curved surfaces of the jumps is, on average, aligned mostly in the x1 
direction so that the absolute value of the streamwise component of the temperature 
gradient should be larger than that in the two lateral directions. 

(6yi) = - C 0 ~ ~ ( d ~  + t). 

7. Temperature-derivative spectra : comparison with isotropy 
The measured (corrected) spectra of 8,i are plotted in figure 10 as a function of the 

normalized one-dimensional wavenumber k: (= k, 7) for three values of 6 (= 0, 0.53 
and 1.06). The near equality of $0 and $0 is consistent with that previously observed 
in other flows: for example a plane jet (Antonia & Browne 1983) and a boundary layer 
(Sreenivasan et al. 1977). Relative to $o $0 and $o are larger at low wavenumbers 
and lower at high wavenumbers. On the’axis,’ $0 monotonically increases for k: 5 0.1 
while, away from the axis, there is a monotLnic decrease with k: over the same 
wavenumber range. This decrease is slightly more accentuated at 6 = 1.06 (figure 1Oc) 
than at 6 = 0.53 (figure lob). T h s  behaviour appears consistent with the slight increase 
in the values of 02,/82, as 6 increases. 

Also shown in figure’l0 are the calculated distributions of $0 and q50 using the 
isotropic relation (Van Atta 1977) 

- 

.z $3 

roo 
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FIGURE 10. Spectra of temperature derivatives and comparison with calculations, based on local 
isotropy. Measured: -, $Q,; , $Q,; ----, q583. Calculated: ---, q5$, or $$a. (a) 6 = 0; (b) 0.53; 
(c)  1.06. 

and the measured (corrected) values of do 1. (Before carrying out the integration in (17), 
a high-order polynomial fit was applied to the data for In 

On the axis of the jet, the calculated and measured (corrected) spectra of 0, a and 0, 
are in excellent agreement with each other for k: 20.05.  For k: < 0.05, the 
calculations are slightly above the measurements, apparently reflecting a small degree 
of low-wavenumber anisotropy. This anisotropy is however much smaller than that 
previously obtained on the centreline of a plalie jet (Antonia, Browne & Chambers 
1985). At 6 = 0.53 and 1.06, the agreement between measurement and calculation is 

, us. In kl . )  
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FIGURE 1 1 .  Ratio of measured and calculated spectra of 0, at 6 = 0, 0.53 and 1.06 : -, = 0; 
--- , 0.53; ----, 1.06. 

not as good as at 5 = 0, reflecting the difference between efa (or %) and 82, as 5 
increases. 

While figure 10 apparently indicates that the departure from isotropy is small when 
k: is sufficiently large, the use of a logarithmic scale tends to minimize departures 
between the measured and calculated spectra of 0,2 (or O,,). To emphasize such 
departures, the ratio ($0,JCaJ($0 ),,, is plotted in figure 11 on a linear scale. At 
f = 0.53 and 1.06, this ratio is in t'ke range 0.80 to 1.10 for k;P 2 0.05. On.the axis, the 
ratio is nearly 1 over the range 0.05 5 kT 5 0.8. As k: approaches 1, noise becomes 
important (figure 4 shows that both $0,, and $0 are affected) and the interpretation of 
($O,,)caJ($O,,>mea becomes difficult since ($0, JCal'8nd ($0, ,>,,, are unlikely to be reliable. 
For kf 5 0.8, the trend of figure 11, which suggests greater anisotropy at 5 = 0.53 and 
1.06 than at 5 = 0, should be reliable. (It is unlikely that this result is affected by the 
fact that isotropy has already been used for correcting the spectra since the use of 
uncorrected spectra leads to essentially the same result.) This trend may reflect the 
influence of the mean shear. A suitable measure of the latter is given by the non- 
dimensional parameter SF/2c, where S is laV/ax,l. In the present flow, this parameter 
increases from zero on the axis to a maximum of about 2.5 at 5 x 1. For comparison, 
the maximum values of S2/2c in a plane jet and a plane wake are 2.8 and 3.0 
respectively. The differences in the maximum values of S?/2cin the three flows do not 
appear to be sufficiently important to explain the smaller anisotropy of the circular jet. 
Figure 10 shows that the departure from isotropy is not very different between f = 0.53 
(S?/2i? x 2.0) and 5 = 1.06 (Sq2/2~ x 2.5). 

The large-scale structures which make up the organized motion in the circular jet 
derive from a number of primary modes of instability of the flow. Each mode is likely 
to have coupled axial, radial and/or azimuthal components. The resulting complex 
three-dimensionality is observed in flow visualizations (e.g. Dimotakis, Miake-Lye & 
Papantoniou 1983 and Yoda, Hesselink & Mungal 1991). Using an array of eight 
X-probes and a time-delay probability method, Chua & Antonia (1992) noted the 
coexistence at xJd= 10 and x , / d =  15 of both symmetrical and antisymmetrical 
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(possibly helical) modes. Yoda, Hesselink & Mungal(l992) concluded that the jet far- 
field has a tendency to switch between axisymmetric and helical modes. This inherent 
three-dimensionality seems a likely contributor to the relatively small departure from 
isotropy, at least in the context of equation (4), in the present flow. The plane jet and 
the plane wake have a lower number of primary instability modes which may result in 
an increased tendency to anisotropy. 

8. Conclusions 
Measurements of the three components of the average temperature dissipation have 

been determined in the self-preserving region of a turbulent round jet using a pair of 
parallel cold wires separated in either the streamwise, radial or azimuthal directions. 
Estimates of these components were made using the correlation method by first 
correcting the attenuation of the high-wavenumber part of the derivative spectra 
caused by the separation between wires. The two methods yield essentially the same 
results. The accuracy of the measured temperature dissipation was reflected in the 
plausible distribution of the turbulent diffusion term, which was obtained by difference 
from the budget of the temperature variance. 

The variances of the radial and azimuthal temperature derivatives are approximately 
equal, their magnitude being only slightly larger than that of the streamwise derivative. 
Support for this result is provided by the general agreement between the measured 
transverse derivative spectra and those calculated from the streamwise derivative 
spectrum using isotropy. This agreement becomes less perfect away from the axis, 
reflecting the possible importance of the mean shear. 

Comparison of the present results with those previously obtained in a plane jet and 
a plane wake indicates that local isotropy is a better approximation for the circular jet 
than for either of the other two flows. This appears to be associated with the more 
complex (three-dimensional) aspects of the organized motion of the circular jet. 
Although the temperature jumps make an important contribution to the temperature 
variance, their contribution to the temperature-derivative variances was found to be 
small. 

The support of the Australian Research Council is acknowledged. 

Appendix 

representation (e.g. Batchelor 1953 ; Lumley & Panofsky 1964) 
The temperature fluctuation at location x can be expressed using a Fourier-Stieltjes 

(A 1) 

where j = 1/ - 1, k is the wavenumber vector and dZ,(k) is the Fourier coefficient 
corresponding to the wavenumber vector k. The derivative @,( follows directly from 
(A 1), namely 

O,i(x) = j ki ejk'"dZ,(k). (A 2) rm 
The corresponding one-dimensional spectrum is 
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where #(k) dk = dZ,(k) dZ,*(k) (the asterisk denotes the complex conjugate) is the 
three-dimensional temperature spectral density. The modification to (A 3) which 
results from the effect of the separation Axi may be written 

The above relations are valid for homogeneous turbulence; under the more restrictive 
assumption of isotropy, (A 4) can be rewritten as (6)  in $4. 
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